Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Valleytronics, harnessing the valley degree of freedom in the momentum space, is a potential energy‐efficient approach for information encoding, manipulation, and storage. Valley degree of freedom exists in a few conventional semiconductors, but recently the emerging 2D materials, such as monolayer transition‐metal dichalcogenides (TMDs), are considered more ideal for valleytronics, due to the additional protection from spin‐valley locking enabled by their inversion symmetry breaking and large spin‐orbit coupling. However, current limitations in the valley lifetime, operation temperature, and light‐valley conversion efficiency in existing materials encumber the practical applications of valleytronics. In this article, the valley depolarization mechanisms and recent progress of novel materials are systematically reviewed for valleytronics beyond TMDs. Valley physics is first reviewed and the factors determining the valley lifetime, including the intrinsic electron‐electron and electron‐lattice interactions, as well as extrinsic defect effects. Then, experimentally demonstrated and theoretically proposed valley materials are introduced which potentially improve valley properties through the changes of spin‐orbit coupling, electronic interactions, time‐reversal symmetry, structures, and defects. Finally, the challenges and perspectives are summarized to realize valleytronic devices in the future.more » « lessFree, publicly-accessible full text available November 28, 2025
-
As the feature size of microelectronic circuits is scaling down to nanometer order, the increasing interconnect crosstalk, resistance-capacitance (RC) delay and power consumption can limit the chip performance and reliability. To address these challenges, new low-kdielectric (k < 2) materials need to be developed to replace current silicon dioxide (k = 3.9) or SiCOH, etc. However, existing low-kdielectric materials, such as organosilicate glass or polymeric dielectrics, suffer from poor thermal and mechanical properties. Two-dimensional polymers (2DPs) are considered promising low-kdielectric materials because of their good thermal and mechanical properties, high porosity and designability. Here, we report a chemical-vapor-deposition (CVD) method for growing fluoride rich 2DP-F films on arbitrary substrates. We show that the grown 2DP-F thin films exhibit ultra-low dielectric constant (in plane k = 1.85 and out-of-plane k = 1.82) and remarkable mechanical properties (Young’s modulus > 15 GPa). We also demonstrated the improved performance of monolayer MoS2field-effect-transistors when utilizing 2DP-F thin films as dielectric substrates.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Light‐responsive materials enable the development of soft robots that are controlled remotely in 3D space and time without the need for cumbersome wires, onboard batteries, or altering the local environment. Azobenzene liquid crystal polymer networks are one such material that can move and deform in response to light actuation. Previous works have demonstrated azo‐based soft robotic grippers and transporters that are remotely powered by light. However, highly adaptive, automated spatiotemporal optical control over these materials has not yet been realized. Herein, a system for an azobenzene liquid crystal elastomer soft robotic arm is created by dynamically patterning light for independently maneuverable joints. The nonlinear material response to optical actuation is characterized, and the broad actuation space is explored with diverse arm configurations. A neural network is trained on the arm configurations and corresponding laser pattern to automate the pattern generation for a desired configuration. Finally, the azobenzene liquid crystal elastomer arm demonstrates complex targeted motion, marking an important step toward optically actuated soft robotics with applications ranging from optomechanics to biomedical tools.more » « less
-
Time-reversal symmetry (TRS) is pivotal for materials’ optical, magnetic, topological, and transport properties. Chiral phonons, characterized by atoms rotating unidirectionally around their equilibrium positions, generate dynamic lattice structures that break TRS. Here, we report that coherent chiral phonons, driven by circularly polarized terahertz light pulses, polarize the paramagnetic spins in cerium fluoride in a manner similar to that of a quasi-static magnetic field on the order of 1 tesla. Through time-resolved Faraday rotation and Kerr ellipticity, we found that the transient magnetization is only excited by pulses resonant with phonons, proportional to the angular momentum of the phonons, and growing with magnetic susceptibility at cryogenic temperatures. The observation quantitatively agrees with our spin-phonon coupling model and may enable new routes to investigating ultrafast magnetism, energy-efficient spintronics, and nonequilibrium phases of matter with broken TRS.more » « less
-
Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool for probing the momentum-resolved single-particle spectral function of materials. Historically, in situ magnetic fields have been carefully avoided as they are detrimental to the control of photoelectron trajectory during the photoelectron detection process. However, magnetic field is an important experimental knob for both probing and tuning symmetry-breaking phases and electronic topology in quantum materials. In this paper, we introduce an easily implementable method for realizing an in situ tunable magnetic field at the sample position in an ARPES experiment and analyze magnetic-field-induced artifacts in the ARPES data. Specifically, we identified and quantified three distinct extrinsic effects of a magnetic field: constant energy contour rotation, emission angle contraction, and momentum broadening. We examined these effects in three prototypical quantum materials, i.e., a topological insulator (Bi2Se3), an iron-based superconductor (LiFeAs), and a cuprate superconductor (Pb-Bi2Sr2CuO6+x), and demonstrate the feasibility of ARPES measurements in the presence of a controllable magnetic field. Our studies lay the foundation for the future development of the technique and interpretation of ARPES measurements of field-tunable quantum phases.more » « less
An official website of the United States government
